Distance dependence of near-field fluorescence enhancement and quenching of single quantum dots

نویسندگان

  • Volker Walhorn
  • Jan Paskarbeit
  • Heinrich Gotthard Frey
  • Alexander Harder
  • Dario Anselmetti
چکیده

In fluorescence microscopy and spectroscopy, energy transfer processes between single fluorophores and fluorophore quencher pairs play an important role in the investigation of molecular distances or orientations. At distances larger than about 3 nm these effects originate predominantly from dipolar coupling. As these experiments are commonly performed in homogenous media, effects at the interface boundaries can be neglected. Nevertheless, the combination of such assays with single-molecule manipulation techniques such as atomic force microscopy (AFM) requires a detailed understanding of the influence of interfaces on dipolar coupling effects. In the presented work we used a combined total internal reflection fluorescence microscopy (TIRFM)-AFM setup to elucidate this issue. We measured the fluorescence emission emanating from single quantum dots as a function of distance from the apex of a gold-coated cantilever tip. As well as fluorescence quenching at close proximity to the tip, we found a nonlinear and nonmonotonic distance dependence of the fluorescence emission. To confirm and interpret our findings we performed calculations on the basis of a simplified multiple multipole (MMP) approach, which successfully supports our experimental data. Moreover, we revealed and quantified the influence of interfering processes such as field enhancement confined at interface boundaries, mirror dipoles and (resonant) dipolar coupling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

آشکارسازی 2، 4، 6- ‌تری نیترو‌تولوئن با استفاده از نقاط ‌کوانتومی کادمیم‌- تلوراید اصلاح ‌شده

The rapid and simple detection of 2,4,6-trinitrotoluene (TNT) as a high consumption explosive from nitroaromatic family, because identification of anti-terrorist sabotage and terrorism, always has been of high importance..Nowadays, methods for explosive compounds detection have been developed by using quantum dots (QDs). Quantum dots are nanoparticles of a new generation of nanotechnology that ...

متن کامل

L- and D-cysteine functionalized CdS quantum dots as nanosensors for detection of L-morphine and D-methamphetamine

A new method in differentiation of chiral molecules is reported based on the fluorescence quenching of functionalized CdS quantum dots (CdS-QDs) as nanosensor by differing in the chirality of functionalization species. The chemically functionalized CdS-QDs with strong yellow emission were prepared using chiral L-cysteine (L-Cyst) and D-cysteine (D-Cyst) molecules. Then, the functionalized CdS-Q...

متن کامل

Competition between excitation and emission enhancements of quantum dots on disordered plasmonic nanostructures

Plasmon-enhanced fluorescence is attributable to two independent processes: 1) excitation enhancement due to an increased electric field near metallic nanostructures and 2) emission enhancement from a surface plasmon resonance-coupled excited state of fluorophores. Using semiconductor nanocrystals (quantum dots) on disordered plasmonic nanostructures and a mesoscopic imaging approach, we demons...

متن کامل

Enhancement and quenching of single-molecule fluorescence.

We present an experimental and theoretical study of the fluorescence rate of a single molecule as a function of its distance to a laser-irradiated gold nanoparticle. The local field enhancement leads to an increased excitation rate whereas nonradiative energy transfer to the particle leads to a decrease of the quantum yield (quenching). Because of these competing effects, previous experiments s...

متن کامل

Nanoplasmonic enhancement of single-molecule fluorescence

We demonstrate that the fluorescence rate from a single molecule with near-unity quantum yield can be enhanced by a factor of ≈10 by use of a single laser-irradiated noble metal nanoparticle. The increased fluorescence rate is primarily the result of the local field enhancement. However, at particle–molecule distances shorter than 2 nm, nonradiative decay of the excited molecule due to energy t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011